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Optimal pruning in neural networks
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We study pruning strategies in simple perceptrons subjected to supervised learning. Our analytical results,
obtained through the statistical mechanics approach to learning theory, are independent of the learning algo-
rithm used in the training process. We calculate the post-training distributionP(J) of synaptic weights, which
depends only on the overlapr0 achieved by the learning algorithm before pruning and the fractionk of
relevant weights in the teacher network. From this distribution, we calculate the optimal pruning strategy for
deleting small weights. The optimal pruning threshold grows from zero asuopt(r0 ,k)}@r02rc(k)#1/2 above
some critical valuerc(k). Thus, the elimination of weak synapses enhances the network performance only
after a critical learning period. Possible implications for biological pruning phenomena are discussed.

PACS number~s!: 87.18.Sn, 05.20.2y, 87.10.1e, 07.05.Mh
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I. INTRODUCTION

A very common but poorly understood developmen
phenomenon, found widespread in vertebrate brains is
initial overproduction of neurons and synapses with poste
elimination of a large amount of these elements@1#. There is
increasing evidence that, instead of being a simple mat
tional epiphenomenon, this ‘‘pruning’’ process has inde
developmental significance, being a selective/competi
procedure that eliminates the weaker synapses. Recent
dence points to the view that this selection process is
done over a random pool of synapses: in the experime
during a previous developmental period, synapses both
crease ~LTP! and decrease~LTD! due to Hebbian/
correlational mechanisms@2,3#. There is also evidence tha
the level of pruning experienced by different brain regions
not preprogrammed but reflects the variability and compl
ity of the environmental input to those areas@4#. Since the
selection mechanism apparently works on directed, non
dom variation, we refer to this view of the pruning process
a selective trophism scenarioto differentiate it from the pure
neural Darwinist account inspired by nondirected select
theories of the immune response@4,5#.

A very common problem in statistical inference tasks
that simpler ~smoother! functions, with fewer parameters
have better interpolation and extrapolation properties but
at risk of being too simple to reliably approximate the targ
function. Since one of the supposed roles of cortical n
works is to provide similar input-output mappings, this kin
of problem could also arise in the biological context. T
conjectured role of biological pruning is to solve this pro
lem by allowing the network architecture to be defineda
posteriori, after some information about the needed co
plexity has been gathered.

*Present address: Faculdades COC, R. Abrao Issa Halack
CEP 14096-160, Ribeiro Preto, SP, Brazil.
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Here we consider a simple learning process in formal n
ral networks where all these ingredients are present.
study the computational effect of pruning the weaker s
apses in a single-layer perceptron. We find that prun
works only after clear differentiation between weak a
strong synapses, a differentiation induced by learning.
find that the optimal pruning criteria~‘‘optimal elimination
threshold’’! should not be fixed but must be time depende
or, better, performance dependent. The optimal prun
threshold also depends on the complexity of the funct
to be implemented: networks that implement comple
multifactorial functions must be pruned only after a lot
learning.

It must be clear that, although inspired by biological e
periments, we are not modeling some specific experime
situation. Our approach, instead, is to implement in a c
crete although simplified way the selective trophism s
nario, looking for possibly generic, robust features of t
pruning process that are certainly present in machine le
ing and that could also be present in biological learning.

The computational advantage of pruning has been stu
in artificial neural networks through numerical simulatio
~for a review, see@6#!. However, up to now, there are few
analytical results concerning pruning strategies. Some pr
ous studies have concluded that pruning has a deleter
effect for the network performance. For example, in asso
tive memory ~Hopfield! networks, it has been shown tha
pruning always degrades the quality of memory retriev
although it can save costly synapses@7#. In the case of feed-
forward networks, analytical studies have been done only
the single-layer perceptron, mainly for the capacity probl
@8#. In this case also pruning is viewed as a mechanism
save synapses, at the cost of reducing the stability of
learned patterns.

There are also some results for theteacher-studentsce-
nario of supervised learning. The teacher-student scenar
a well studied paradigm for function approximation whe
the mapping to be implemented by a network~the student! is
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8388 PRE 62DANIELA M. L. BARBATO AND OSAME KINOUCHI
defined by another network~the teacher!, which may repre-
sent the regularities of the environment@10,11#. In this case,
the natural performance measure is the teacher-student
lap. For example, Barbato and Fontanari have shown
pruning of trained networks always decreases the achie
teacher-student overlap if the distribution of teacher weig
has the usual Gaussian form@9#.

Pruning improves the performance in the teacher-stud
scenario if we consider the proper class of target functio
Here we consider the case where there exists only a frac
k,1 of relevant weights in the target function~in single-
layer perceptrons this is equivalent to the existence of a f
tion 12k of irrelevant node inputs!. We argue that this situ
ation is much more common in real world problems than
k51 case. A practical instance where this happens is in
problem of sex classification based on a face recogni
task, where most of the input pixels are irrelevant to the t
@12#. The learning scenario with irrelevant teacher weig
has been addressed previously by Kuhlmann and Mu¨ller
@13#, who studied a particular learning algorithm~the maxi-
mum stabilityperceptron!. Here we extend their results b
showing that the pruning performance depends only on
teacher complexityk and the student-teacher overlapr0
achieved before pruning, and can be studied without re
ence to learning algorithms.

The paper is organized as follows. In Sec. II, we pres
the learning scenario to be studied. Section III contains
derivation of the distribution of student weights as a funct
of prior teacher-student overlapr0 and the parameterk of
the teacher weight distribution. This distribution does n
depend on the learning algorithm used, which influen
only the evolution of the overlapr0 as a function of the
number of examples. In that section, we also derive the
timal pruning strategy and present the phase diagram in
r0 versusk plane that shows the regime where pruning i
proves generalization ability. Then, as an example,
present in Sec. IV simulations of optimal pruning for simp
Hebbian learning which confirm our analytical results.
Sec. V, we discuss the possible relevance of our result
biological pruning. We offer some conclusions in the fin
section.

II. THE LEARNING SCENARIO

A. The teacher-student learning problem

In the teacher-student learning scenario the function to
approximated is represented by a given neural network~the
teacher or target network!. Another network~the student!
tries to infer or approximate the parameters of the targe
using only the information contained on a set of input-out
pairs ~examples!. Here, both the teacher and the student
single-layer perceptrons withN inputs and a single scala
output. This case has been extensively studied as a par
matic scenario in the statistical physics approach to learn
theory @10,11#.

More pointedly, the neural network we consider in th
paper consists of N binary input units Si561 (i
51, . . . ,N) coupled to a single Boolean output units
through a set of real-valued synaptic weightsJi ( i
51, . . . ,N) according to the equation
er-
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s5sgnS (
i 51

N

JiSi D . ~1!

We observe that our results depend only on the first
second moments of the input distribution and will be va
also for real-valued inputs with zero centered Gaussian
tributions.

The task of the student perceptron is to realize the m
ping between the 2N possible input configurations$S% and
their respective outputs$t% generated by the teacher perce
tron:

t5sgnS (
i 51

N

BiSi D , ~2!

where the weightsBi , i 51, . . . ,N, are statistically indepen
dent random variables distributed according to the proba
ity distribution

PB~B!5k0d~B!1k1d~B21!1k2d~B11! ~3!

with k01k11k251. The motivation for choosing a teache
network with a fraction of null weights is to model the rea
istic situation in nature where most of the input compone
are completely irrelevant to the final outcome. In fact, e
ploring the effect of pruning in this more realistic setting
the main purpose of this paper.

Our results can be generalized in a straightforward m
ner to other teacher distributions since an arbitraryPB(B)
can be written as

PB~B!5E
2`

`

k~x!d~B2x!dx ~4!

with an arbitrary densityk(x). We expect that our conclu
sions will not change qualitatively if the teacher distributio
continues to present a finite fractionk0 of zero weights.

To achieve its task, the student network is trained w
P5aN examples, i.e., input-output pairs (Sm,tm), m
51, . . . ,P, wheretm is the teacher’s output to inputSm and
each componentSi

m is drawn independently from the prob
ability distribution

PS~Si
m!5

1

2
d~Si

m21!1
1

2
d~Si

m11!. ~5!

In the present developmental context, it is better to interp
the teacher network not as an external supervisor but as
resenting an attractor state~the ‘‘mature state’’!. The data or
examples furnished by the teacher are supposed to be
coded, in a distributed way, in the genoma-environment
teractions: the environment furnishes the possible inputs w
a distributionPS(Sm) and an intrinsic recompense syste
furnishes the desired~teacher! outputstm. In other words,
the presumed genetic information corresponds to the tea
outputs, but the actual teacher parameters~its architecture
and weights! are not present. The teacher network represe
an ideal or prototypical mature state partially realized by
student after the realization of the learning/developmen
process. Here, development is thought of as thetransient
dynamical evolution of the immature network toward t
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PRE 62 8389OPTIMAL PRUNING IN NEURAL NETWORKS
mature one, which constitutes a long lived metastable s
~the true stable state is the dead one!. So the natural measur
of this process is the teacher-student overlapr ~to be defined
later!, which may tend to but not achieve the ideal valuer
51.

B. The statistical learning process

In the statistical physics approach to learning theory@10#,
the learning process is viewed as a search for the glo
minimum of a certain cost function, termed the training e
ergy, usually assuming the form

EL~J!5 (
m51

P

V~lm!, ~6!

wherelm5tmJ•Sm/AN is thestability of examplem and the
potentialV(l) defines the specific~training! algorithm used
to explore the space of weights. We note that the stabilitylm

is positive only if the inputSm is associated with the correc
output, namely,tm. The diverse potentialsV(l) proposed in
the literature realize different ways of penalizing student v
tor that produce negative stabilities.

We start by considering the space of all networks w
training energiesEL(J) subject to a stochastic minimizatio
learning process under a spherical constraint in the weig
Note that this minimization is done with the set of variab
L5$Si

m ,B% quenched. This defines a post-training probab
ity distribution on this space of networks, given by the c
nonical ~Gibbs! distribution with the stochastic paramet
~temperature! T51/b,

P~JuL!5
1

ZL
exp@2bEL~J!#, ~7!

whereZL is the partition function

ZL5E
2`

`

dm~J!exp@2bEL~J!# ~8!

with dm(J)5(2peQ)2N/2) i
NdJid(NQ2( iJi

2) being the
normalized prior student distribution with a spherical co
straint ~for details, see@10#!.

C. Performance measures

The ultimate goal of the learning process is to produc
network capable of realizing an example not belonging to
training set. To measure this capability we introduce the g
eralization function

eg~J,B!5E dSPS~S!Q„2t~B,S!s~J,S!…, ~9!

wheredSPS(S)[) idSi PS(Si) is the measure in the inpu
space andQ(x) is the Heaviside~step! function. Heres and
t are the student’s and teacher’s outputs, respectively
input S. In the thermodynamic limitN→` the integration in
Eq. ~9! can be readily carried out, yielding@10#

eg~J,B!5
1

p
arccosr0~J,B!,
te

al
-

-

ts.

-
-

-

a
e
n-

to

r0~J,B![
R~J,B!

AQ~J!M ~B!
, ~10!

whereQ(J)5(1/N)( i
NJi

2 is the squared norm of the stude
perceptron,R(J,B)5(1/N)( i

NBiJi is the overlap between
student and teacher networks, andM (B)5(1/N)( i

NBi
2 is the

squared norm of the teacher perceptron. We note that, in
thermodynamic limit, use of self-averaging yieldsM5k1
1k25k, that is, the teacher norm equals the fractionk of
nonzero weights for our choice ofPB(B).

The relevant quantity in the statistical approach is theav-
erage generalization error

eg~a!5ŠŠ^eg~J,B!&T‹‹, ~11!

where^•••&T denotes the average over the post-training d
tribution P(JuL) ~the thermal average! and ^^•••&& stands
for a quenched averageover the random variablesL
5$Si

m ,Bi%. We note that after these averages are taken
generalization error depends only on the relative numbe
examplesa.

Since the generalization error is a monotonic function
the teacher-student overlap, it is sometimes convenien
present the results as a function of the average overlapr0
[ŠŠ^r0(J,B)&T‹‹. In the following, we will call this overlap
the maturity of the network.

III. ANALYTICAL RESULTS

A. Free energy

Following the standard prescription of taking averag
over extensive quantities only@10# we define the average
free energy densityf by

2b f 5 lim
N→`

1

N
^^ ln ZL&&. ~12!

As usual, the quenched average can be calculated throug
replica method, which consists of using the ident
^^ ln ZL&&5 limn→0n21 ln^^ZL

n&&, evaluating^^ZL
n&& for inte-

ger n, and then analytically continuing ton50.
As the calculation off in the thermodynamic limit is stan

dard@10# and rather unilluminating, we present only the fin
result in replica symmetric~RS! approximation:

f 5U2TS ~13!

with

S5
1

2 F lnS 12
q

QD1
q2R2/k

Q2q G , ~14!

U522
a

bE2`

`

DzE
0

`

Dy lnE dle2bE(l)

A2p~Q2q!
, ~15!

E~l!5V~l!1
1

2b~Q2q! S l2y
R

Ak
2zAq2

R2

k D 2

.

The physical order parameters in RS approximation,
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q5qab5
1

N
ŠŠ^Ja

•Jb&T‹‹; a,b, ~16!

R5Ra5
1

N
ŠŠ^Ja&T•B‹‹, ~17!

measure the average overlap between two different solut
Ja andJb, and the average overlap between the typical s
dentJa and the teacher networkB, respectively. The saddle
point parameters (q,R) are obtained so as to extremizef.
More specifically, due to the limitn→0, the parameterq
maximizes the free energy, whileR minimizes it, as usual
Notice that hitherto we have not specified the functio
form of V(l).

B. Probability distribution of the weight entries

The equilibirum distributionP(JuL) minimizes the free
energy, giving the probability of achieving a vectorJ after
learning. Now our interest is to determine the probabil
distribution function that a given entry, sayJi , has the value
J in the deterministic limitT50. Clearly, this probability
distribution is given by

Pi~J!5 lim
b→`

K K E dm~J!P~JuL!d~Ji2J!L L , ~18!

whereP(JuL) is the weight joint~Gibbs! probability distri-
bution given by Eq.~7!. Here thed function guarantees tha
the entryJi is not integrated out. Moreover, since this dist
bution is obviously independent of the particular chosen
try Ji , we can writePi(J)5P(J), ; i . This probability dis-
tribution can readily be evaluated by introducing
additional term to the energy function,Eaux(J)5EL(J)
1h( id(Ji2J), so that

P~J!52 lim
b→`

1

bN

]

]h
^^ ln Zaux&&uh50 , ~19!

whereZaux is the partition function of Eq.~8! with EL re-
placed byEaux . The advantage of this formulation is that th
procedure used to find the average free energy in the pr
ous section can be readily applied to evaluate Eq.~19! since
the new termh( id(Ji2J) affects only the entropic term Eq
~14!. The final result is a superposition of Gaussian distrib
tions centered at the different values ofr0B:

P~J!5E dBPB~B!
e2(J2r0B)2/(2x2)

A2px2
, ~20!

with x25k(12r0
2) and

r05
R

AQM
5

R

k
. ~21!

Here,r0 is the normalized overlap between the student a
teacher perceptrons (21,r0,1). Furthermore, to facilitate
the comparison betweenP(J) and PB(B), we have chosen
the norm of the student perceptron so as to coincide with
ns
-

l

-

vi-

-

d

e

norm of the teacher perceptron, i.e.,Q5M5k. In particular,
for the distributionPB(B) given by Eq.~3!, we get

P~J!5
k0e2J2/2x2

A2px2
1

k1e2(J2r0)2/2x2

A2px2
1

k2e2(J1r0)2/2x2

A2px2
.

~22!

Notice that the learning algorithm, i.e., the particular co
functionV(l) used, does not appear explicitly in the expre
sion for P(J). All information concerning the specific cos
function is embodied in the value of the order parame
r0(a). This means thatr0 can be viewed as an independe
control parameter, whose physical realization may
achieved through a proper choice of the training algorithm
well as of the training set sizea. In general,r0 increases
monotonically with a; in particular, r050 for a50 and
r0→1 for a→`. However, we must note that for certa
training tasks the regime of perfect learning (r051) may
never be reached, even for infinite training set sizes. T
occurs, for example, if the initial number of student weigh
is smaller than the number of teacher weights. This unre
izable case will not be considered here, since we are sup
ing that the synaptic overgrowth phase indeed leads to
works with initial synaptic number above that needed
perform the target function.

We show in Fig. 1 the dependence ofP(J) on r0 for k0
50.5, k150.25, andk250.25. Notice that the peaks aroun
J50 andJ561 become more distinct asr0 increases. In
fact, P(J) reduces to the teacher probability distributio
given in Eq.~3! in the limit r0→1. This result suggests tha
cutting weights with strength smaller than a certain thresh
u ~i.e., with uJu,u) might be a good strategy to improve th
generalization performance of the network.

C. Generalization error

Motivated by the past section we execute the prun
strategy, i.e., we cut off the weights that belong to the ran
2u,J,u. To implement this cutoff we introduce the prun

FIG. 1. Postlearning distribution of student weightsP(J) as a
function of the maturityr0 given a teacher distribution withk0

50.5 andk15k250.25.
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ing functionF u
i 5Q(uJi u2u), so that the postpruning gene

alization error and the postpruning teacher-student ove
become@9#

eg~a,u!5
1

p
arccosr„r0~a!,u…,

r~r0 ,u!5
S

APM
,

~23!

P5
1

N (
i

ŠŠ^Ji
2F u

i &T‹‹,

S5
1

N (
i

ŠŠ^BiJiF u
i &T‹‹.

Notice that the dependence on the number of examples
been expressed in terms of the achieved maturityr0(a). The
order parameterP is calculated as P52(1/bN)(]/
]h)^^ ln Zaux&&uh50 where the partition function involves th
effective energyEaux(J)5EL(J)1h( iJi

2F u
i . In order to

evaluateP, we use the replica method and takeh50. The
final result is, in the RS approximation,

P5~kx21kr0
2!@H~A!1H~B!#12~12k!x2H~C!

1
kx2

A2p
S Be2A2/21Ae2B2/21

2~12k!

k
Ce2C2/2D ,

~24!

where H(x)5*x
`Dx, and A5(u2r0)/x, B5(u1r0)/x,

and C5u/x. Notice thatk1 and k2 appear solely as the
combinationk5k11k2. The parameterS is calculated in the
same way, by changingJ2Fu to JBFu in the expression for
Eaux , giving

S5kr0@H~A!1H~B!#1
kx

A2p
~e2A2/22e2B2/2!. ~25!

As was suggested in Fig. 1, in order to minimize the g
eralization error we cut off weights withuJu,u. In Fig. 2 we
show, for k50.25, the postpruning overlapr(r0 ,u) as a
function of the pruning thresholdu and the prepruning over
lap r0. Notice that at some critical valuerc(k) of r0 the
functionr(r0 ,u) starts to have a maximum, i.e., for maturi
levels withr0.rc one hasuopt.0.

D. Optimal pruning

To find the optimal valueuopt that leads to the best prun
ing performance, we calculate the derivativedr/du50,
which is equivalent to

2P
dS

du
5S

dP

du
, ~26!

with
p

as

-

dP

du
5

2u2k

A2px2
~e2A2/21e2B2/2!2

2x~12k!C2e2C2/2

A2p
,

dS

du
52

ku

A2px2
~e2A2/21e2B2/2!. ~27!

Equation~26! has a solely numerical solution, so we illu
trate the behavior ofuopt(r0 ,k) through Fig. 3. As observed
before, below some critical valuerc(k) for the prior overlap
r0, pruning always degrades the performance of the stud
network, so in this case the best choice isuopt50. However,
after the student has achieved somer0(k).rc(k), there ex-
ists a finite intervaluP@0,umax# that leads tor(u).r0, with
some optimal pruning thresholduopt(k) inside this interval.

FIG. 2. The postpruning overlapr(u) as a function of the prun-
ing thresholdu, for different values of the maturityr0 and a teacher
distribution withk50.25. Note that pruning improves the overlapr
only after achieving a maturity levelr0.0.64 and thatuopt→0.5
whenr0→1.

FIG. 3. The optimal pruning thresholduopt as a function of the
maturity r0 for different teacher complexity levelsk. Inset: Plot of
uopt vs (r2rc)

1/2 for k50.25.
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8392 PRE 62DANIELA M. L. BARBATO AND OSAME KINOUCHI
Near the critical valuerc , we have verified numerically
~see inset of Fig. 3! that the optimal threshold starts growin
as

uopt~r0 ,k!}@r02rc~k!#1/2. ~28!

Notice also that in the limitr0→1 one hasuopt→0.5.
In order to find the minimal maturity levelrc(k) for

which pruning improves the generalization error we calcul
dr/duuu50. As suggested by Fig. 2, we would naively expe
to determine rc as the point for which the derivativ
dr/duuu50 turns out positive. However, at the critical valu
both the first and the second derivative calculated inu50
are null for anyr0, so the critical linerc(k) will be deter-
mined by the condition that the third derivative starts to
positive. The conditiond3r/du3uu5050 leads~after some
algebra! to the transcendental equation

S 2

12rc
2

2k D expS 2
rc

2

2k~12rc
2!
D 512k, ~29!

where we have used thatP5k andS5kr0 at u50.
This equation gives the phase boundaryrc(k) shown in

Fig. 4. Aboverc(k), pruning is effective~if u,umax), but
below this line we haver(u),r(0)[r0 and (uopt5umax
50) so it is better not to prune. Curiously, neark51, the
convergence ofrc(k) toward rc(1)51 is highly nonlinear
~see inset in Fig. 4!.

There is also an optimal pruning epochr0* (k).rc such
that the relative gainDr5@r(uopt)2r0* #/r0* is maximized
~see Fig. 5!. In this figure we also present the generalizati
error gainDe5@eg

02eg(uopt)#/eg
0 , which perhaps is a more

meaningful property. This gain grows monotonically un
the 50% level, with an inflection point atr* . The sigmoidal
character ofDe leads to a natural separation between t
regimes, the last one favorable to pruning.

For a givenk, the optimal pruning epochr* naturally
defines two learning phases: in the first one there is a h
amount of connection, and not only the synapses but also

FIG. 4. Pruning phase diagram. Above the linerc(k) pruning
improves the final overlapr: r(uopt).r0. Inset: phase diagram
neark51. Note thatrc(k) goes torc(1)51 continuously but in a
highly nonlinear manner.
e
t

e

ge
he

network architecture is plastic; in the second one prun
occurs with advantage and, after pruning, the architectur
structured in an irreversible way, plasticity being restrict
only to the fine tuning of the surviving synapses. It is tem
ing to identify the first plastic phase with a large number
synapses (r0,r0* ), as the usual ‘‘critical learning period’
commonly found in developmental studies.

IV. SIMULATION RESULTS

To illustrate the validity of our calculations we prese
simulation results for a particular learning algorithm, the
called simple Hebb rule. For this learning procedure, th
change due to themth example is written as

DJi}Si
mtm ~30!

and the training potential isV(l)52l.
We first check the validity of Eq.~20!, presenting results

for the student distribution of weightsP(J) produced by the
simple Hebb rule when the teacher distribution has t
peaks,

PB~B!5kd~B21!1~12k!d~B!, ~31!

that is, with parameters (k15k,k250,k0512k). The peak
at zero represents the fraction of possible inputs availabl
the neuron at the developmental stage but which should
remain in the mature network. The peak atB51 corresponds
to the fraction of mature synapses to be present in the ta
~mature! network. The simulation, with a network withN
54000 andk50.25, gives a very good confirmation of th
analytical curve~see Fig. 6!.

It is known @10# that after the presentation ofaN ex-
amples, the student-teacher overlap achieved by the sim
Hebb rule isr0(a)5(11p/2a)21/2. In Fig. 7 we show the
performance before and after pruning the weights withuJu
,uopt(r0 ,k) for k50.25. The curveeg

opt(a) ~solid! gives
the theoretical lower bound for any pruning strategy appl
to simple Hebbian learning. Notice that the critical matur
rc translates to a critical number of examples

FIG. 5. Relative error gainDe5(eg
02eg

opt)/eg
0 and relative over-

lap gainDr5(ropt2r0)/r0 as a function of the maturity levelr0,
for k50.25. Note that, althoughuopt.0 afterrc'0.64, the optimal
epoch for pruning occurs when the maturity error isr0* '0.9 ~to
maximizeDr) or afterr0* 50.95 ~to maximizeDe).
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ac5
p

2

rc
2

12rc
2
'1.01, ~32!

before which the optimal choice is not to prune. Aftera
'15, the error gain stabilizes aroundDe50.5, so we may
pick this value as a good pruning epoch.

V. DISCUSSION

There exists an intense debate in the literature about
meaning of synaptic pruning, which reflects the controve
between instructionist, selectionist, and nativist theories
development~for a review, see@4,5#!. Instructionists empha
size the role of environmental factors in directing the dev
opment of neural synapses. Selectionists view the role of
environment as selecting synapses from a primary reper

FIG. 6. Post-training distributionP(J) produced by the simple
Hebb rule when the teacher distribution isPB(B)5(12k)d(B)
1kd(B21) with k50.25. Simulation results~circles! compared to
the theoretical curve~solid! for a55, that is,r0(a)'0.872.

FIG. 7. Generalization erroreg(a) for simple Hebb algorithm,
in log-linear scale, without pruning~above! and with the optimal
pruning thresholduopt„r0(a)… ~below! for teacher complexityk
50.25. Data from simulation~circles! with N5400 and theoretica
curves~solid!. Also shown is the relative error gainDe ~triangles!.
Note that the critical maturityrc is achieved atac'1.01 but the
optimal pruning epoch is neara515.
he
y
f

l-
e

ire

with the initial value of weights set by intrinsic~nondirected!
factors. Nativists would see synaptic pruning as an exam
of ‘‘programmed death’’ of structures within a maturation
schedule.

It is interesting that all these different ideas can be imp
mented, analyzed, and compared within the same percep
student-teacher scenario. For example, Lo´pez and Kinzel
studied a pure selectionist process@14#. In that case, Hebbian
information is not used for incremental modification of th
student weights but only to set the pruning criterion. Th
found that the performance depends strongly on the in
distribution of student weights and its correlation to t
teacher weight distribution. Since the diluted teacher s
nario was not analyzed in that paper, only partial over
with the teacher vector could be achievable in the limita
→`. To our knowledge, Lo´pez and Kinzel performed the
single analytical study of pure neural Darwinism in perce
trons and further comparison with our diluted teacher res
would be desirable.

In the model studied here, synaptic selection, althou
computationally relevant, is a secondary process. Error
rection ~directed change in the synaptic weights! is the pri-
mary process, being also essential for discovering which s
apses should be pruned. Without sufficient learning~that is,
when r,rc), there is no clear differentiation in synapt
magnitudes, and no hint as to which synapses should
eliminated. Optimization of the pruning criterion inevitab
leads to a very rich scenario. If optimization principles a
relevant to biological processes~this is not a consensua
idea!, and if some generic or robust behaviors found in p
ceptron theory can be translated to the biological conte
then the model studied here could provide interesting s
gestions.

First, our results suggest that the level of pruning co
depend on the complexity of the task to be performed: in
simple scenario, on the fractionk of relevant inputs. So we
expect that the pruning level will vary enormously for di
ferent brain regions, depending on the complexity of t
function to be implemented by these networks. This inde
has been found in some experimental studies@1,2,4#.

Second, the fraction of eliminated synapses could dep
on time not directly~being not simply a maturational sched
ule! but indirectly through the time evolution of the perfo
mance, that is, on some measure similar to our ‘‘maturit
level r0, which depends on the number of learning instan
a that occur up to timet. This indeed is coherent with ex
periments where Hebbian learning~LTP! is chemically
blocked, that is,a(t) is slowed down: in that case, the prun
ing process is also retarded@1,2#. The dependence of optima
strategies on the overlapr0 has been previously found in th
realm of optimal generalization algorithms@11# and is a ro-
bust feature preserved in optimal multilayer networks a
Bayesian approaches to learning.

Third, the optimal pruning thresholduopt is not stationary.
Pruning is effective only after gross differentiation betwe
synaptic strengths, promoted by learning, is achieved. Th
what has been observed in the neuromuscular junction@3#:
pruning is most observed after the magnitude ratio betw
strong and weak synapses is near 4. But our results sug
that the pruning criterionuopt should not be fixed but could
change with time: initially only the very weak synapses a
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eliminated, but, after more learning, even medium size s
apses could be pruned. We think that the gradual increas
uopt could be implemented by a maturational decrease in
abundance of neural growth factors so that small synap
start first to fall into starvation@2#. We do not know if this
nonstationary pruning threshold has already been meas
in experiments, so it can be viewed as an independent
gestion of our model.

From the model an optimal epochr0* for massive pruning
also emerges naturally, namely, the epoch where the g
Dr andDe are maximized. We suggest that the more plas
phase before massive pruning, when the architecture is
well defined andr0,r* , should be correlated to the critica
learning period usually observed in biological learning@1#.

Finally, we observe that our calculations refer to
quenched pruning scenario@8,9,13,14#, that is, to the prob-
lem of what is the better pruning strategy after the netw
has seenaN examples~or, equivalently, after it has achieve
the maturity levelr0). After pruning, connections canno
reappear or be learned any longer in this scenario. One m
recognize, however, that since new examples certainly ar
after this epoch, it would be better to permit the formation
new synapses and also new pruning phases. At the pres
is not clear how to optimize this process, and it must
stressed that our results concern only optimization of a sin
pruning phase. The scenario of successive overgrow
pruning waves suggested by some authors~open review in
@4#! appears naturally in this context, being a possi
mechanism to overcome the limitations of quenched prun

VI. CONCLUSIONS

We have studied analytically a simple model of pruni
in artificial neural networks with similar features to tho
present in the experiments of Colmanet al. @3#: pruning by
-
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deletion of the weaker synapses after strength differentia
induced by Hebbian learning. We have found a phase
gram in the space of environmental complexityk and prior
maturity levelr0, with two different regimes. If the maturity
level is insufficient@r0,rc(k)#, pruning is deleterious and
should not be performed (uopt50). After a critical maturity
level rc(k), pruning enhances the network performance,
optimal pruning threshold is different from zero, and grow
asuopt(k)}@r02rc(k)#21/2. Our results are valid for a large
class of learning algorithms since the way the prior learn
level r0 is achieved is not of primary importance. We al
expect that optimization ofu will lead to similar features in
multilayer networks.

Since pruning is a very complex, environmentally depe
dent, and nonstationary process even in the simple per
tron learning scenario, we conjecture that similar effe
could also be present in biological pruning. In contrast
pure selectionism or genetic nativism, we studied the c
where synaptic pruning is thought of as a process analog
to branch and leaf selection during the growth of trees a
similar biological structures~the selective trophism sce
nario!. Like a tree~in Greek, ‘‘dendron’’!, the detailed den-
dritic architecture most probably is not genetically prewir
nor does it simply represent the outcome of pruning a r
domly generated graph. Growth by environmentally direc
processes~trophism! and competition for nerve-growth fac
tors ~selectionism! will lead to a strongly nonlinear outcom
of genetic and environmental factors.
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