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We study pruning strategies in simple perceptrons subjected to supervised learning. Our analytical results,
obtained through the statistical mechanics approach to learning theory, are independent of the learning algo-
rithm used in the training process. We calculate the post-training distribEid of synaptic weights, which
depends only on the overlag@, achieved by the learning algorithm before pruning and the fractioof
relevant weights in the teacher network. From this distribution, we calculate the optimal pruning strategy for
deleting small weights. The optimal pruning threshold grows from zer@,gépo, k) [ po— pc( ) 1*? above
some critical valuep.(«). Thus, the elimination of weak synapses enhances the network performance only
after a critical learning period. Possible implications for biological pruning phenomena are discussed.

PACS numbg(s): 87.18.Sn, 05.26-y, 87.10+e, 07.05.Mh

I. INTRODUCTION Here we consider a simple learning process in formal neu-
ral networks where all these ingredients are present. We
A very common but poorly understood developmentalstudy the computational effect of pruning the weaker syn-
phenomenon, found widespread in vertebrate brains is thapses in a single-layer perceptron. We find that pruning
initial overproduction of neurons and synapses with posterioworks only after clear differentiation between weak and
elimination of a large amount of these elemdrfk There is  strong synapses, a differentiation induced by learning. We
increasing evidence that, instead of being a simple maturéfind that the optimal pruning criterié'optimal elimination
tional epiphenomenon, this “pruning” process has indeedthreshold”) should not be fixed but must be time dependent,
developmental significance, being a selective/competitiveor, better, performance dependent. The optimal pruning
procedure that eliminates the weaker synapses. Recent ewiireshold also depends on the complexity of the function
dence points to the view that this selection process is ndio be implemented: networks that implement complex,
done over a random pool of synapses: in the experimentspultifactorial functions must be pruned only after a lot of
during a previous developmental period, synapses both irlearning.
crease (LTP) and decrease(LTD) due to Hebbian/ It must be clear that, although inspired by biological ex-
correlational mechanismi®,3]. There is also evidence that periments, we are not modeling some specific experimental
the level of pruning experienced by different brain regions issituation. Our approach, instead, is to implement in a con-
not preprogrammed but reflects the variability and complex<crete although simplified way the selective trophism sce-
ity of the environmental input to those aregfel. Since the nario, looking for possibly generic, robust features of the
selection mechanism apparently works on directed, nonrarpruning process that are certainly present in machine learn-
dom variation, we refer to this view of the pruning process asng and that could also be present in biological learning.
aselective trophism scenarto differentiate it from the pure The computational advantage of pruning has been studied
neural Darwinist account inspired by nondirected selectionn artificial neural networks through numerical simulations
theories of the immune responggs]. (for a review, sed6]). However, up to now, there are few
A very common problem in statistical inference tasks isanalytical results concerning pruning strategies. Some previ-
that simpler(smoothey functions, with fewer parameters, ous studies have concluded that pruning has a deleterious
have better interpolation and extrapolation properties but areffect for the network performance. For example, in associa-
at risk of being too simple to reliably approximate the targettive memory (Hopfield networks, it has been shown that
function. Since one of the supposed roles of cortical netpruning always degrades the quality of memory retrieval,
works is to provide similar input-output mappings, this kind although it can save costly synap$@s In the case of feed-
of problem could also arise in the biological context. Theforward networks, analytical studies have been done only for
conjectured role of biological pruning is to solve this prob-the single-layer perceptron, mainly for the capacity problem
lem by allowing the network architecture to be defined [8]. In this case also pruning is viewed as a mechanism to
posteriori after some information about the needed com-save synapses, at the cost of reducing the stability of the
plexity has been gathered. learned patterns.
There are also some results for tteacher-studensce-
nario of supervised learning. The teacher-student scenario is
*Present address: Faculdades COC, R. Abrao Issa Halack 988, well studied paradigm for function approximation where
CEP 14096-160, Ribeiro Preto, SP, Brazil. the mapping to be implemented by a netw@he studentis
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defined by another networtthe teacher which may repre- N
sent the regularities of the environméh,11]. In this case, o=5s(g Z JiS|. (oh]
the natural performance measure is the teacher-student over- =1
lap. For example, Barbato and Fontanari have shown thge gpserve that our results depend only on the first and
pruning of trained networks always decreases the achieveg,,nq moments of the input distribution and will be valid
teacher-student overlap if the distribution of teacher weights, g for real-valued inputs with zero centered Gaussian dis-
has the usual Gaussian fof@y. tributions.

Pruning improves the performance in the teacher-student The task of the student perceptron is to realize the map-

scenario if we consider the proper class of target functionspmg between the 2 possible input configurationS} and

Here we consider the case where there exists only a fracti ; ;
) i AR eir respective outpu enerated by the teacher percep-
x<1 of relevant weights in the target functigm single- P putsT} g y P P

layer perceptrons this is equivalent to the existence of a frac-
tion 1— « of irrelevant node inpujs We argue that this situ- N
ation is much more common in real world problems than the T= sgr( 2 BiSi), (2
k=1 case. A practical instance where this happens is in the =1

roblem of sex classification based on a face recognition . . - .
Fask, where most of the input pixels are irrelevant to thge tasl\<Nhere the we|ght.§i ! ':1.’ L N, are stat|_st|ca||y indepen- .
[12]. The learning scenario with irrelevant teacher Weightsdem. ra_ndo_m variables distributed according to the probabil
has been addressed previously by Kuhlmann andleviu ity distribution
[13], who studied a particular learning algorithitihe maxi- Pa(B)=ko8(B)+ k1 8(B—1)+ k,6(B+1) 3
mum stabilityperceptron Here we extend their results by
showing that the pruning performance depends only on thjith «,+ «,+ k,= 1. The motivation for choosing a teacher
teacher complexityx and the student-teacher overlag  network with a fraction of null weights is to model the real-
achieved before pruning, and can be studied without referistic situation in nature where most of the input components
ence to learning algorithms. are completely irrelevant to the final outcome. In fact, ex-

The paper is organized as follows. In Sec. Il, we presenploring the effect of pruning in this more realistic setting is

the learning scenario to be studied. Section Ill contains théne main purpose of this paper.

derivation of the distribution of student weights as a function  Qur results can be generalized in a straightforward man-
of prior teacher-student overlag, and the parametex of  ner to other teacher distributions since an arbitr®g(B)
the teacher weight distribution. This distribution does notcan be written as
depend on the learning algorithm used, which influences
only the evolution of the overlap, as a function of the
number of examples. In that section, we also derive the op-
timal pruning strategy and present the phase diagram in the
po Versusk plane that shows the regime where pruning im-with an arbitrary densityc(x). We expect that our conclu-
proves generalization ability. Then, as an example, waions will not change qualitatively if the teacher distribution
present in Sec. IV simulations of optimal pruning for simple continues to present a finite fractiag of zero weights.
Hebbian learning which confirm our analytical results. In  To achieve its task, the student network is trained with
Sec. V, we discuss the possible relevance of our results tp=aoN examples, i.e., input-output pairsSH,7*), u
biological pruning. We offer some conclusions in the final=1, ... P, wherer* is the teacher’s output to inp®* and
section. each componen$” is drawn independently from the prob-
ability distribution

PB(B):fiCK(X)&(B—x)dx (4)

Il. THE LEARNING SCENARIO 1 1
Ps(S)=5 (S = 1)+ 5 8(S+1). (5)

A. The teacher-student learning problem

In the teacher-student learning scenario the function to bén the present developmental context, it is better to interpret
approximated is represented by a given neural netwibix  the teacher network not as an external supervisor but as rep-
teacher or target networkAnother network(the student resenting an attractor stafine “mature state). The data or
tries to infer or approximate the parameters of the target bgxamples furnished by the teacher are supposed to be en-
using only the information contained on a set of input-outputcoded, in a distributed way, in the genoma-environment in-
pairs (examples Here, both the teacher and the student argeractions: the environment furnishes the possible inputs with
single-layer perceptrons withl inputs and a single scalar a distributionP5(S*) and an intrinsic recompense system
output. This case has been extensively studied as a paradifyrnishes the desireteacher outputs7*. In other words,
matic scenario in the statistical physics approach to learninghe presumed genetic information corresponds to the teacher

theory[10,11]. outputs, but the actual teacher paramei@s architecture
More pointedly, the neural network we consider in thisand weightgare not present. The teacher network represents
paper consists ofN binary input units §==*1 (i an ideal or prototypical mature state partially realized by the

=1,...N) coupled to a single Boolean output umit  student after the realization of the learning/developmental
through a set of real-valued synaptic weighds (i process. Here, development is thought of as tila@sient
=1,... N) according to the equation dynamical evolution of the immature network toward the
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Enr?ture one,b\INhich C(.)nsrgituées c?)lclgé:] Iri]ved met?stable state R(J,B) (
the true stable state is the dea the natural measure J,B)= ———, 10
of this process is the teacher-student ovepldpo be defined pol.B) VQ(I)M(B) )
later), which may tend to but not achieve the ideal vajue N2 -
-1 whereQ(J)=(1/N)Z;"J; is the squared norm of the student
perceptron,R(J,B)=(1/N)2iNBiJi is the overlap between
B. The statistical learning process student and teacher networks, avi¢B) = (1/N)=]'B? is the

o ) ) squared norm of the teacher perceptron. We note that, in the
In the statistical physics approach to learning thddg, thermodynamic limit, use of self-averaging yieltb= i,

the learning process is viewed as a search for the gIobaJrK =, that is, the teacher norm equals the fractiomf
minimum of a certain cost function, termed the training en-,, yn-ero weights for our choice @t(B).

ergy, usually assuming the form The relevant quantity in the statistical approach isdkie
erage generalization error

eg(a)={((eg(J,B))r)), (11)

where#= 3. $*/\N is thestability of examplex and the ~ where(- - - )1 denotes the average over the post-training dis-

potential V(\) defines the specifittraining) algorithm used tribution P(J|£) (the thermal averageand((- - -)) stands

to explore the space of weights. We note that the stabifity for a quenched averageover the random variable<

is positive only if the inputS* is associated with the correct ={S",B;}. We note that after these averages are taken the

output, namelys*. The diverse potential(\) proposed in  generalization error depends only on the relative number of

the literature realize different ways of penalizing student vecexamplesc.

tor that produce negative stabilities. Since the generalization error is a monotonic function of
We start by considering the space of all networks withthe teacher-student overlap, it is sometimes convenient to

training energie€ -(J) subject to a stochastic minimization present the results as a function of the average overjap

learning process under a spherical constraint in the weights={({{po(J,B)))). In the following, we will call this overlap

Note that this minimization is done with the set of variablesthe maturity of the network

L={S",B} quenched. This defines a post-training probabil-

P
EL()= 2 VO, (®)

ity distribution on this space of networks, given by the ca- IIl. ANALYTICAL RESULTS
nonical (Gibbg distribution with the stochastic parameter
(temperature T= 1/, A. Free energy
1 Following the standard prescription of taking averages
PI|L)=——exd — BEA(D)] @) over extensive quantities onfyl0] we define the average

free energy density by

whereZ, is the partition function — Bf= lim —<(In 2. (12

© N— o0
2= | duyexi-pEA)] ®

- As usual, the quenched average can be calculated through the
, N2 N ) i replica method, which consists of using the identity
with du(J)=(27eQ) II7dJ;6(NQ—2J7) being the n7z yy—jim,  ;n~tIn((Zh), evaluating((Z%)) for inte-
normalized prior student distribution with a spherical Con'gern and then analytically continuing to=0
straint (for details, se¢10]). As the calculation of in the thermodynamic limit is stan-

dard[10] and rather unilluminating, we present only the final
C. Performance measures result in replica symmetri€RS) approximation:

The ultimate goal of the learning process is to produce a
network capable of realizing an example not belonging to the
training set. To measure this capability we introduce the geng i
eralization function

f=U-TS (13

s Y in[ - 9 1 SR (14
eg(J,B)zf dSPy(9O(-1(B,5c(J,9), (9 2 Q) Q-q ]
wheredSPg(S)=I1;dS P4(S) is the measure in the input e BEMN)
space an® (x) is the Heavisiddstep function. Heres and U= _Zﬁﬁm sz DyIn m (19

7 are the student’s and teacher’'s outputs, respectively, to
input S. In the thermodynamic limiN— oo the integration in
Eqg. (9) can be readily carried out, yieldirfg.0]

2

1
EN)=V(N)+ —Z,B(Q—q)

R R?
)\—yﬁ—z q—7

The physical order parameters in RS approximation,

1
€y(J,B)= p arcco(J,B),
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1 0.6
0=dap=1g (3% I7));  a<b, (16) ] v =r=025
0.51
1 a ]
R=R,=1;((3")1-B)), (17 04
measure the average overlap between two different solutions = 031
J2 and J®, and the average overlap between the typical stu- o
dentJ? and the teacher netwokk, respectively. The saddle- 0.2+
point parametersq,R) are obtained so as to extremite 1
More specifically, due to the limih—0, the parameteq 0.14
maximizes the free energy, whilR minimizes it, as usual.
Notice that hitherto we have not specified the functional 0.0
form of V(A).
B. Probability distribution of the weight entries FIG. 1. Postlearning distribution of student weig§J) as a

function of the maturityp, given a teacher distribution witk,

The equilibirum distributionP(J|£) minimizes the free —0.5 andsx, = k= 0.25.

energy, giving the probability of achieving a vectbrafter
learning. Now our interest is to determine the probability ) )
distribution function that a given entry, sdy, has the value norm of the teacher perceptron, i.Q:=M = «. In particular,
J in the deterministic limitT=0. Clearly, this probability ~for the distributionPs(B) given by Eq.(3), we get
distribution is given by

e 2% e Umr0%2 o e=(tr0)%2n?

. __ Ko
Pi<J>=[!|an<< f dM<J>7><J|£>6<Ji—J>>>, A8 PO ot e T o

(22
whereP(J|£) is the weight joint(Gibbs probability distri-
bution given by Eq(7). Here thed function guarantees that Notice that the learning algorithm, i.e., the particular cost

Lhe.ent.ry\]itis_not lint.e%rateddout. l\/:corr:aover, _sinlce ﬂ;]is distri- functionV(\) used, does not appear explicitly in the expres-
ution is obviously independent of the particular chosen en-; - . ; -
try J;, we can writeP(J)=P(J), Vi. This probability dis- sion for P(J). All information concerning the specific cost

A . ) . function is embodied in the value of the order parameter
tribution can readily be evaluated by introducing an P

" . po(a@). This means thgb, can be viewed as an independent
additional term to the energy functiork,,(J)=E,(J) trol t h hvsical lizati
+h3,8(J,—J), so that control parameter, whose physical realization may be

achieved through a proper choice of the training algorithm as
1 2 well as o_f the trgining_set si;e. In general,p, increases
P(I)=—lim —= —{((INZau)|h=0. (19 monotonically with «; in particular, po=0 for «=0 and .
g BN dh po—1 for a—. However, we must note that for certain
training tasks the regime of perfect learning,€1) may
whereZ,,, is the partition function of Eq(8) with E. re-  never be reached, even for infinite training set sizes. This
placed byE,,,. The advantage of this formulation is that the occurs, for example, if the initial number of student weights
procedure used to find the average free energy in the previs smaller than the number of teacher weights. This unreal-
ous section can be readily applied to evaluate (E6) since izable case will not be considered here, since we are suppos-
the new termh; 5(J; — J) affects only the entropic term Eq. ing that the synaptic overgrowth phase indeed leads to net-
(14). The final result is a superposition of Gaussian distribuiworks with initial synaptic number above that needed to

tions centered at the different values@B: perform the target function.
We show in Fig. 1 the dependence®fJ) on pq for «g
e~ (I=roB)?/(2x?) =0.5, k;=0.25, andk,=0.25. Notice that the peaks around
P(J)=f dBPB(B)Tsz (20 J=0 andJ=+1 become more distinct gs, increases. In

fact, P(J) reduces to the teacher probability distribution
given in Eq.(3) in the limit pp— 1. This result suggests that
cutting weights with strength smaller than a certain threshold

0 (i.e., with |J| < #) might be a good strategy to improve the
R E (21) generalization performance of the network.

SRCTING

Here, pg is the normalized overlap between the student and
teacher perceptrons{(1<py<1). Furthermore, to facilitate Motivated by the past section we execute the pruning
the comparison betweeR(J) and Pg(B), we have chosen strategy, i.e., we cut off the weights that belong to the range
the norm of the student perceptron so as to coincide with the- #<J<< 6. To implement this cutoff we introduce the prun-

with x?=k(1—p3) and

C. Generalization error
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ing function Fl,= ®(|J;| — 6), so that the postpruning gener- 1.0
alization error and the postpruning teacher-student overlap

become 9] 084

1
ey, 0)= p arccop(pg( @), 6),
0.6

S
P(Poﬁ):\/ﬁ, 0.4
(23 .

0.2

1 .
P=3 2 (IFF)),

0.0 T T
0.0 0.5 1.0 1.5

1 )
S=— B;J;F! .
N Z (B 0>T» FIG. 2. The postpruning overlag( 6) as a function of the prun-

ing thresholdy, for different values of the maturity, and a teacher
Notice that the dependence on the number of examples hakstribution with«=0.25. Note that pruning improves the overap
been expressed in terms of the achieved matyijfyr). The  only after achieving a maturity level,>0.64 and thatf,,—0.5
order parameterP is calculated asP=—(1/gN)(9/  Whenpo—1.
dh){{In Zu))lh=o Where the partition function involves the

effective energyE, (J)=E,(J)+h=;J2F,. In order to dP - 6%« , ». 2x(1—Kk)C2%e €2
evaluateP, we use the replica method and take0. The a0 —2(6_A e 87— ,
final result is, in the RS approximation, N2mx N2m
P=(xkx*+ kpp)[H(A)+H(B)]+2(1~ k) x*H(C) d4s 0 ) ,
, @:_ z(e—A /2+e—B /2). (27)
4 SX | geA%2y pgBY2, 2(1-x) Ce C%2| N2y
N2 K

(24) Equation(26) hgs a solely numerical so_Iution, so we illus-
trate the behavior ofl,,(po, ) through Fig. 3. As observed
where H(x)=/7Dx, and A=(6—po)/x, B=(6+po)lx. before, t_)elow some critical valyg.(«) for the prior overlap
and C=6/y. Notice thatx; and x, appear solely as the Po pruning glways degrades the perforr_nance of the student
combinationk = k1 + k5. The parametebis calculated in the network, so in this case the best choic@ig=0. However,

: : - fter the student has achieved sopéx) > p.(«), there ex-
same way, by changind’F, to JBF, in the expression for a o Pe .
way, by ging~e 6! xpresst ists a finite intervab e [0,6,,,,] that leads tg(6)> po, with

E ivin ) . L - B
aux: GVINg some optimal pruning threshol,( «) inside this interval.
S=kpolH(A) +H(B) ]+ (e~ A2— e 8%2) (25) 1.00
N2
As was suggested in Fig. 1, in order to minimize the gen-
eralization error we cut off weights witld| < 6. In Fig. 2 we 0.754
show, for k=0.25, the postpruning overlap(py,0) as a
function of the pruning threshold and the prepruning over-
lap po. Notice that at some critical valug.(x) of pg the g 0.50-
functionp(pg, 0) starts to have a maximum, i.e., for maturity @
levels withpy>p. one hasf,,>0.
0.25 1
D. Optimal pruning
To find the optimal valué,,; that leads to the best prun-
ing performance, we calculate the derivatidp/dé=0, 0.00
which is equivalent to 0.6
ds dP
2P —=S—, (26) . : .
dé do FIG. 3. The optimal pruning thresholg},,; as a function of the

maturity p, for different teacher complexity levels. Inset: Plot of
with Bopt VS (p— pc) M2 for k=0.25.
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1.0 0.5
0.8- 0.4-
Q
0.3-
0.6 <. ]
[«}]
° < o2
S 04
0.1-
0.2 0971
0.96 : 0.0 :
0.990 0.995 1.000 0.5 0.6
0.0 d T d T d T v T v P
0.0 0.2 0.4 0.6 0.8 1.0 o
K FIG. 5. Relative error gain .= (ej—ej"")/e] and relative over-

. . ) . lap gainA ,=(popi— po)/po @s a function of the maturity levei,

FIG. 4. Pruning phase diagram. Above the ling«) pruning  for x=0.25. Note that, although,,>0 afterp.~0.64, the optimal
improves the final overlap: p(6,p) > po- Inset: phase diagram  epoch for pruning occurs when the maturity errorpfg~0.9 (to
nearx=1. Note thatp.(«) goes top(1)=1 continuously but in a maximizeA ) or after p§ =0.95 (to maximizeA).
highly nonlinear manner.

. . i network architecture is plastic; in the second one pruning

Near the critical valug., we have verified numerically occurs with advantage and, after pruning, the architecture is
(see inset of Fig. Bthat the optimal threshold starts growing giryctured in an irreversible way, plasticity being restricted
as only to the fine tuning of the surviving synapses. It is tempt-

12 ing to identify the first plastic phase with a large number of
Oopipo. k) *[po—pcl#) ] (28) synapses fo<pg ), as the usual “critical learning period”

Notice also that in the limipg—1 one hasf,,— 0.5. commonly found in developmental studies.

In order to find the minimal maturity levep.(«) for
which pruning improves the generalization error we calculate IV. SIMULATION RESULTS
dp/d6|y-o. As suggested by Fig. 2, we would naively expect  T¢ jljustrate the validity of our calculations we present
to determinep. as the point for which the derivative gimylation results for a particular learning algorithm, the so

dp/d6,— turns out positive. However, at the critical value, called simple Hebb rule For this learning procedure, the
both the first and the second derivative calculated#0  change due to thath example is written as

are null for anypg, so the critical linep.(x) will be deter-

mined by the condition that the third derivative starts to be Ay St (30)
positive. The conditiond®p/d63|,_,=0 leads(after some
algebra to the transcendental equation and the training potential i¥(\)=—N\.
We first check the validity of Eq20), presenting results
2 p(Z: for the student distribution of weigh®(J) produced by the
1 5K —Zlﬁ =1l-x, (29) simple Hebb rule when the teacher distribution has two
pc K( pc) peaks,

where we have used th&= x andS=kp, at 6=0. Pa(B)=kS(B—1)+(1—«)3(B), (31)

This equation gives the phase boundagf«) shown in
Fig. 4. Abovep(«), pruning is effective(if 6<6ma0, but  that is, with parameters«g = «,x,=0,ko=1— ). The peak
below this line we havep(6)<p(0)=po and (6op:=Omax  at zero represents the fraction of possible inputs available to
=0) so it is better not to prune. Curiously, nea=1, the  the neuron at the developmental stage but which should not
convergence op¢(«) toward pc(1)=1 is highly nonlinear remain in the mature network. The peakBat 1 corresponds

(see inset in Fig. B to the fraction of mature synapses to be present in the target
There is also an optimal pruning epoph(«)>p. such  (maturé network. The simulation, with a network witN
that the relative gaim\ ,=[p(6,p) —po 1/p5 is maximized  =4000 and«=0.25, gives a very good confirmation of the

(see Fig. 5. In this figure we also present the generalizationanalytical curvesee Fig. 6.
error gainA.=[eJ—ey(fp) /€3, which perhaps is a more It is known [10] that after the presentation @fN ex-
meaningful property. This gain grows monotonically until amples, the student-teacher overlap achieved by the simple
the 50% level, with an inflection point at . The sigmoidal  Hebb rule ispo(@) = (1+ m/2e) Y2 In Fig. 7 we show the
character ofA, leads to a natural separation between twoperformance before and after pruning the weights With
regimes, the last one favorable to pruning. <Bopi(po.«) for k=0.25. The curveegp‘(a) (solid) gives

For a givenk, the optimal pruning epoch* naturally  the theoretical lower bound for any pruning strategy applied
defines two learning phases: in the first one there is a hug® simple Hebbian learning. Notice that the critical maturity
amount of connection, and not only the synapses but also the, translates to a critical number of examples
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1.21

1.0

0.8

P()

0.6

0.4

0.2

0.0

o=5
polo) = 0.872
k =0.25

FIG. 6. Post-training distributio(J) produced by the simple
Hebb rule when the teacher distribution % (B)=(1— ) 6(B)
+ k8(B—1) with k=0.25. Simulation result&ircles compared to
the theoretical curvésolid) for «=5, that is,po(a)~0.872.

before which the optimal choice is not to prune. Afier
~15, the error gain stabilizes arourd,=0.5, so we may

2520 -15-1.0 -05 0.0 0.5 1.0 1.5 20 25

J

2
Pc
A=+

21-p?

~1.01,

pick this value as a good pruning epoch.

There exists an intense debate in the literature about t

V. DISCUSSION

with the initial value of weights set by intrinsioondirected
factors. Nativists would see synaptic pruning as an example
of “programmed death” of structures within a maturational
schedule.

It is interesting that all these different ideas can be imple-
mented, analyzed, and compared within the same perceptron
student-teacher scenario. For examplépén and Kinzel
studied a pure selectionist procg&d]. In that case, Hebbian
information is not used for incremental modification of the
student weights but only to set the pruning criterion. They
found that the performance depends strongly on the initial
distribution of student weights and its correlation to the
teacher weight distribution. Since the diluted teacher sce-
nario was not analyzed in that paper, only partial overlap
with the teacher vector could be achievable in the limit
—o. To our knowledge, [pez and Kinzel performed the
single analytical study of pure neural Darwinism in percep-
trons and further comparison with our diluted teacher results
would be desirable.

In the model studied here, synaptic selection, although
computationally relevant, is a secondary process. Error cor-
rection (directed change in the synaptic weighis the pri-
mary process, being also essential for discovering which syn-
apses should be pruned. Without sufficient learrithgt is,
when p<p.), there is no clear differentiation in synaptic
magnitudes, and no hint as to which synapses should be
eliminated. Optimization of the pruning criterion inevitably
leads to a very rich scenario. If optimization principles are
relevant to biological processeshis is not a consensual
ideg, and if some generic or robust behaviors found in per-
ceptron theory can be translated to the biological context,
then the model studied here could provide interesting sug-

estions.

meaning of synaptic pruning, which reflects the controversy rirst our results suggest that the level of pruning could
between instructionist, selectionist, and nativist theories ijepend on the complexity of the task to be performed: in our

developmentfor a review, se¢4,5]). Instructionists empha-

simple scenario, on the fraction of relevant inputs. So we

size the role of environmental factors in directing the deve"expect that the pruning level will vary enormously for dif-
opment of neural synapses. Selectionists view the role of thf‘erent brain regions, depending on the complexity of the
environment as selecting synapses from a primary repertoirgnction to be implemented by these networks. This indeed

0.6

FIG. 7. Generalization erragy(«) for simple Hebb algorithm,
in log-linear scale, without prunin¢above and with the optimal
pruning thresholdd,,(po()) (below) for teacher complexityx
=0.25. Data from simulatiokcircles with N=400 and theoretical
curves(solid). Also shown is the relative error gaik, (triangles.
Note that the critical maturity, is achieved atx.~1.01 but the

0.1 1 10

optimal pruning epoch is near= 15.

has been found in some experimental stuflieg,4].

Second, the fraction of eliminated synapses could depend
on time not directly(being not simply a maturational sched-
ule) but indirectly through the time evolution of the perfor-
mance, that is, on some measure similar to our “maturity”
level py, which depends on the number of learning instances
a that occur up to time. This indeed is coherent with ex-
periments where Hebbian learnind.TP) is chemically
blocked, that isx(t) is slowed down: in that case, the prun-
ing process is also retardéd,2]. The dependence of optimal
strategies on the overlag has been previously found in the
realm of optimal generalization algorithri$1] and is a ro-
bust feature preserved in optimal multilayer networks and
Bayesian approaches to learning.

Third, the optimal pruning threshol}, ,; is not stationary.
Pruning is effective only after gross differentiation between
synaptic strengths, promoted by learning, is achieved. This is
what has been observed in the neuromuscular jun¢8dn
pruning is most observed after the magnitude ratio between
strong and weak synapses is near 4. But our results suggest
that the pruning criterior,,; should not be fixed but could
change with time: initially only the very weak synapses are
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eliminated, but, after more learning, even medium size syneeletion of the weaker synapses after strength differentiation
apses could be pruned. We think that the gradual increase afduced by Hebbian learning. We have found a phase dia-
6opt cOUld be implemented by a maturational decrease in thgram in the space of environmental complexityand prior
abundance of neural growth factors so that small synapsesaturity levelpq, with two different regimes. If the maturity
start first to fall into starvatiofi2]. We do not know if this level is insufficient po<<p.(«)], pruning is deleterious and
nonstationary pruning threshold has already been measuretiould not be performedd(,,,=0). After a critical maturity
in experiments, so it can be viewed as an independent sudevel p.(«), pruning enhances the network performance, the
gestion of our model. optimal pruning threshold is different from zero, and grows

From the model an optimal epogi§ for massive pruning as Oopil k)< po— pe(K) 1~ Y2 Our results are valid for a large
also emerges naturally, namely, the epoch where the gairdass of learning algorithms since the way the prior learning
A, andA, are maximized. We suggest that the more plastidevel p, is achieved is not of primary importance. We also
phase before massive pruning, when the architecture is nexpect that optimization of will lead to similar features in
well defined angy<p*, should be correlated to the critical multilayer networks.
learning period usually observed in biological learnjig Since pruning is a very complex, environmentally depen-

Finally, we observe that our calculations refer to adent, and nonstationary process even in the simple percep-
qguenched pruning scenari{®,9,13,14, that is, to the prob- tron learning scenario, we conjecture that similar effects
lem of what is the better pruning strategy after the networkcould also be present in biological pruning. In contrast to
has seemvrN examplegor, equivalently, after it has achieved pure selectionism or genetic nativism, we studied the case
the maturity levelpy). After pruning, connections cannot where synaptic pruning is thought of as a process analogous
reappear or be learned any longer in this scenario. One must branch and leaf selection during the growth of trees and
recognize, however, that since new examples certainly arriveimilar biological structuregthe selective trophism sce-
after this epoch, it would be better to permit the formation ofnario). Like a tree(in Greek, “dendron’), the detailed den-
new synapses and also new pruning phases. At the presenglititic architecture most probably is not genetically prewired
is not clear how to optimize this process, and it must benor does it simply represent the outcome of pruning a ran-
stressed that our results concern only optimization of a singldomly generated graph. Growth by environmentally directed
pruning phase. The scenario of successive overgrowtlgrocessestrophism and competition for nerve-growth fac-
pruning waves suggested by some authopen review in  tors (selectionismwill lead to a strongly nonlinear outcome
[4]) appears naturally in this context, being a possibleof genetic and environmental factors.
mechanism to overcome the limitations of quenched pruning.

ACKNOWLEDGMENTS

VI. CONCLUSIONS .
We have the pleasure to acknowledge J. F. Fontanari for

We have studied analytically a simple model of pruninghis advice during the elaboration of this work. Silvia M.
in artificial neural networks with similar features to those Kuva aided us in revising the paper. D.M.B. acknowledges
present in the experiments of Colmanal. [3]: pruning by  research support from UNIP and O.K. from FAPESP.

[1] M. C. Brown, W. G. Hopkins, and R. J. Keyndsssentials of 25, L593 (1992.
Neural Development(Cambridge University Press, Cam- [9] D. M. L. Barbato and J. F. Fontanari, Phys. Rev5E 6219
bridge, 199]; P. Rakic, J. P. Bourgeois, and P. S. Goldman- (1995; J. Phys. A29, 7003(1996.
Rakie, Prog. Brain Resl02 227 (1994; G. M. Innocenti,  [10] H. S. Seung, H. Sompolinsky, and N. Tishby, Phys. Re45A

TINS 18, 397 (1995. _ 6056 (1992; T. L. H. Watkin, A. Rau, and M. Biehl, Rev.
[2] E: R. Kandel and T. J. O'Dell, Scien@58, 243 (1992; W. Mod. Phys 65, 599(1993; M. Bouten, J. Schietse, and C. Van
Singer,ibid. 270, 758 (1995. den Broeck, Phys. Rev. &2, 1958(1995; M. Opper and W.

[3] H. Colman, J. Nabekura, and J. W. Lichtman, Scie@@§,
356 (1997); E. Frank,ibid. 275 324 (1997.

[4] S. R. Quartz and T. J. Sejnowski, Behav. Brain Q€. 537
(1997. See also the open review commentary that follows this
article.

[5] J-P. Changeaux and A. Danchin, Natytendon 264, 705
(1976; J-P. ChangeauxThe Neuronal ManOxford Univer-
sity Press, Oxford, 1985

Kinzel, in Models of Neural Networks Ill edited by E.
Domanyet al. (Springer-Verlag, Berlin, 1995

[11] O. Kinouchi and N. Caticha, J. Phys.25, 6243(1992; C. W.
H. Mace and A. C. C. Coolen, Stat. Comp8t.55 (1998; R.
Vicente, O. Kinouchi, and N. Caticha, Mach. LearniBi@y 179
(1998; N. Caticha and O. Kinouchi, Philos. Mag. ®, 1565
(1998; in Online Learning in Neural Network®dited by D.

[6] R. Reed, IEEE Trans. Neural Netw, 740 (1993. Saad(Cambridge University Press, Cambridge, 1999
[7] G. Chechik, I. Meilijson, and E. Ruppin, Neural Comp1@, [12] M S. Gray, D. T. Lawrence, B. A. Golomb, and T. J. Se-
1759(1998. jnowsky, Neural Comput7, 1160(1995.

[8] K. Y. M. Wong and M. Bouten, Europhys. Letl6, 525 [13] P. K,uhlmann and K-R. Miler, J. Phys. A27, 3759(1994.
(1991); P. Kuhlmann, R. Garee and H. EiRfeller, J. Phys. A [14] B. Lopez and W. Kinzel, J. Phys. 80, 7753(1997).



